2018 Applications of Mathematics

National 5-Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2018
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Applications of Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.
(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{ccc}
& \cdot{ }^{5} & \bullet 6 \\
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 100 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as
$\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$=2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$
gains full credit
- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.	(a)	-1 Strategy: identify multiplier -2 Strategy: identify power - ${ }^{3}$ Process: calculate value -4 Communication: round to 2 significant figures	${ }^{-1} \quad 0.87$ $\bullet^{2} \quad . .{ }^{3}$ - ${ }^{3}$ 921•90(42) $\cdot 4920$	4

Notes:

1. Correct answer with no working award $4 / 4$
2. Candidates using repeated subtraction must work to a minimum of 3 significant figures, rounded or truncated to gain \bullet^{3}
3. \bullet^{3} is available for calculations of depreciation if at least 2 years have been considered

Commonly Observed Responses:

1. $1400-\left(1400 \times 0.87^{3}\right)=478.0958$ leading to an answer of 480
2. $1400 \times 1 \cdot 13^{3}=2020 \cdot 06$ leading to an answer of 2000
3. $1400 \div 1 \cdot 13^{3}=970 \cdot 27$ leading to an answer of 970
4. $1400-(182 \times 3)=854$ leading to an answer of 850
5. $1400 \times 0.87 \times 3=3654$ leading to an answer of 3700
6. $1400 \times 0 \cdot 87=1218$ leading to an answer of 1200
award $3 / 4 \checkmark \checkmark \times \checkmark$
award 3/4× $\checkmark \checkmark \checkmark$
award 2/4× $\times \times \checkmark$
award 2/4 $\times \times \checkmark \checkmark$
award $2 / 4 \checkmark \times \times \checkmark$
award $2 / 4 \checkmark \times \times \checkmark$

(b)	- 5 Strategy: know how to calculate percentage loss - 6 Process: calculate percentage	$\begin{array}{ll} \cdot 5 & \frac{450}{1400} \times 100 \\ \bullet & 32(\cdot 1 \ldots) \end{array}$	2
	Alternative Strategy -5 Strategy: know to use trial and improvement -6 Process: calculate percentage	- ${ }^{5}$ evidence - 62	2

Notes:

1. Correct answer with no working award $1 / 2$
2. For $1400-950=450=450$ followed by 32% with no additional working award $1 / 2$
3. Where \bullet^{5} is not awarded \bullet^{6} can be awarded for a calculation of the form $\frac{a}{b} \times c$ where a, b and c are a calculated loss, 1400, 950 or 100
4. For the alternative strategy, \bullet^{6} can only be awarded for showing that the percentage is closer to 32 than 33

Commonly Observed Responses:

1. $\frac{950}{1400} \times 100=67 \cdot 857$
award $1 / 2 \times \checkmark$
2. $\frac{450}{950} \times 100=47 \cdot 368$

Question		Generic scheme	Illustrative scheme 2. (a)		\bullet^{1} Communication: state median

Question		Generic scheme	Illustrative scheme	Max mark
4.	(a)	-1 Strategy: know how to calculate time - ${ }^{2}$ Process: calculate time in minutes	- $\frac{144}{360} \times 105$ - 242	2
		Alternative Strategy -1 Strategy: know how to calculate time - ${ }^{2}$ Process: calculate time in minutes	- $105 \div(360 \div 144)$ $\cdot 242$	2

Notes:

1. In the original strategy, where \bullet^{1} is not awarded, \bullet^{2} can be awarded for any calculation of the form $\frac{a}{b} \times c$ where a, b and c are an angle from the pie chart, 360 and either 105 or 60
2. Rounding or truncation within working must be to at least 3 significant figures

Commonly Observed Responses:

1. $\frac{105}{360}=0 \cdot 291 \rightarrow 0 \cdot 291 \times 144=41 \cdot 904$
award $2 / 2 \checkmark \checkmark$
2. $\frac{105}{360}=0 \cdot 29 \rightarrow 0 \cdot 29 \times 144=41 \cdot 76$
award $1 / 2 \checkmark \times$

(b) $\left\lvert\,$\begin{tabular}{ll|l|}

$\bullet 3$ \& | Process: convert time from |
| :--- |
| minutes to hours |

$\bullet 4$ \& Process: calculate distance
\end{tabular}$\quad \bullet^{3} \frac{21}{60}(=0 \cdot 35)\right.$

Notes:

Commonly Observed Responses:

1. $21 \times 6 \cdot 6=138 \cdot 6$
2. $21 \times 60 \times 6 \cdot 6=8316$
award $1 / 2 \times \checkmark$
award $1 / 2 \times \checkmark$

Question		Generic scheme	Illustrative scheme		Max mark
5.	(a)	- ${ }^{1}$ Strategy: know to use inverse proportion -2 Process: calculate feed for one sheep - ${ }^{3}$ Strategy/process: calculate the number of days	-1 Evidence - $2350 \times 18=6300$ - $3600 \div 450=14$		3
Notes: 1. Correct answer with no working 2. For an answer of eg "the food lasts 4 days less" award \bullet^{3} 3. If the candidate subtracts 18 to find the number of days, \bullet^{3} is not available					
Commonly Observed Responses: 1. $350 \times 18 \div 100=63$ award $2 / 3 \checkmark \checkmark x$ 2. $18 \div 350 \times 450=23 \cdot 14 \ldots$ award $2 / 3 \times \checkmark \checkmark$ 3. $450 \div(350 \div 18)=23 \cdot 14 \ldots$ award 2/3× $\checkmark \checkmark$ 4. $18 \div 350 \times 100=5 \cdot 14 \ldots$ award 1/3 $\times \checkmark \times$ 5. $350 \div 18 \times 450=8750$ award 1/3 $\times \times \checkmark$ 6. $350 \div 18 \times 100=1944 \cdot 44 \ldots$ award 0/3 $\times \times \times$					
	(b)	-4 Strategy/process: substitute into the cylinder formula - ${ }^{5}$ Process: calculate volume	- ${ }^{4} \mathrm{~V}=\pi \times 1.9^{2} \times 9.7$ • ${ }^{5} 110 \cdot 009 \ldots \mathrm{~m}^{3}$		2
Notes: 1. Correct units must be stated for \bullet^{5} to be awarded 2. Accept legitimate variations of π 3. For the final answer accept any legitimate rounding or truncation to at least 2 significant figures 4. \bullet^{5} is only available for a calculation involving π, a power and at least one other number 5. If candidate uses $V=\frac{1}{3} \pi r^{2} h$ or $V=\frac{4}{3} \pi r^{3}$ approximations for the fractions must be given to at least 3 decimal places for \bullet^{5} to be available					
Commonly Observed Responses: 1. $\pi \times 3.8^{2} \times 9.7=440.03 \ldots \mathrm{~m}^{3}$ award $1 / 2 \times \checkmark$ 2. $\pi \times 3.8 \times 9.7=115.79 \ldots \mathrm{~m}^{3}$ award $0 / 2 \times \times$ 3. $\pi \times 1 \cdot 9 \times 9.7=57.89 \ldots \mathrm{~m}^{3}$ award 0/2 $\times \times$					

	Question	Generic scheme	Illustrative scheme	Max mark
6.		-1 Strategy/process: calculate the value of one share -2 Strategy/process: calculate total amount paid	$\begin{aligned} & \bullet 154 \div 7=22 \\ & \bullet 330 \end{aligned}$	2

Notes:

1. For commonly observed responses illustrated below, $10 \cdot 26$ or $10 \cdot 27$ multiplied by 7,3 or 5 can be awarded •2
2. •1 cannot be awarded if the candidate has also calculated $154 \div 5$ and/or $154 \div 3$ and/or $154 \div 15$

Commonly Observed Responses:

1. $154 \div 15 \times 7=71 \cdot 866 \ldots$
award $1 / 2 \times \checkmark$
2. $154 \div 15 \times 3=30 \cdot 80$
award 1/2 $\times \checkmark$
3. $154 \div 15 \times 5=51 \cdot 333$...
award $1 / 2 \times \checkmark$

Question		Generic scheme	Illustrative scheme	Max mark
7.		-1 Strategy/process: convert km to miles - 2 Strategy/process: convert litres to gallons - ${ }^{3}$ Strategy/process: calculate total distance possible on a full tank in miles -4 Communication: conclusion based on working	- $1 \quad 650 \div 1 \cdot 609=403 \cdot 977$... - $250 \div 4 \cdot 545=11$ - ${ }^{3} 47 \times 11=517$ - ${ }^{4}$ Yes (since $404<517$)	4
		Alternative strategy 1 - Strategy/process: convert litres to gallons -2 Strategy/process: calculate total distance possible on a full tank in miles - Strategy/process: convert miles to km -4 Communication: conclusion based on working	-1 $50 \div 4 \cdot 545=11$ - $247 \times 11=517$ - ${ }^{3} 517 \times 1 \cdot 609=831 \cdot 853$ - ${ }^{4}$ Yes (since $650<832$)	4
		Alternative Strategy 2 -1 Strategy/process: convert km to miles -2 Strategy/process: calculate number of gallons required -3 Strategy/process: convert gallons to litres -4 Communication: conclusion based on working	- ${ }^{1} 650 \div 1 \cdot 609=403 \cdot 977 \ldots$ - ${ }^{2} 403 \cdot 977 \ldots \div 47=8 \cdot 595 \ldots$ $\bullet^{3} 8 \cdot 595 \ldots \times 4 \cdot 545=39 \cdot 065 \ldots$ - 4 Yes (since $39<50$)	4
		Alternative Strategy 3 -1 Strategy/process: convert km to miles -2 Strategy/process: calculate number of gallons required - ${ }^{3}$ Strategy/process: convert litres to gallons - ${ }^{4}$ Communication: conclusion based on working	- ${ }^{1} 650 \div 1 \cdot 609=403 \cdot 977 \ldots$ - ${ }^{2} 403 \cdot 977 \ldots \div 47=8 \cdot 595 \ldots$ - ${ }^{3} 50 \div 4 \cdot 545=11$ -4 Yes (since $8.595<11$)	4

	Question	Generic scheme	Illustrative scheme	Max mark
7.		Alternative Strategy 4 - ${ }^{1}$ Strategy/process: convert miles per gallon to km per gallon -2 Strategy/process: convert litres to gallons - ${ }^{3}$ Strategy/process: calculate total distance possible on a full tank in km -4 Communication: conclusion based on working	- ${ }^{1} \quad 47 \times 1 \cdot 609=75 \cdot 623 . .$. - ${ }^{2} 50 \div 4 \cdot 545=11$ - ${ }^{3} \quad 11 \times 75 \cdot 623=831 \cdot 853$ -4 Yes (since $650<831.853$)	4
Notes:				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	- ${ }^{1}$ Strategy: know to pick cheapest prices and add cost of frame - ${ }^{2}$ Process: find total cost	-1 evidence -2960.39	2
		ndidate calculates the price for buyin calculated correctly and the cost of the Go -350•78, Bikevelo -370•34, Velo cy 05 leading to 2991•00)	all the parts from the same shop, all frame added to the cheapest les $-405 \cdot 20$, Cycle trax $-410 \cdot 64$	shops 1/2
1. $319 \cdot 44$ (no frame) award $1 / 2 \times \checkmark$ 2. $2865 \cdot 91$ (1 wheel and 1 tyre)				
	(b)	-3 Strategy: know how to calculate finance package - ${ }^{4}$ Process: calculate deposit - 5 Process: find total finance package -6 Communication: state extra cost	-3 Evidence of attempt to find deposit and attempt to find total finance package - ${ }^{4} 15 \%$ of $2991=448 \cdot 65$ - ${ }^{5} 448 \cdot 65+36 \times 76 \cdot 50=3202 \cdot 65$ -6 $3202 \cdot 65-2960 \cdot 39=242 \cdot 26$	4
Notes: 1. If candidate finds 15% of answer to (a), instead of 15% of $£ 2991$ then a maximum of $3 / 4$ is available $\begin{gathered} \text { eg } 36 \times 76 \cdot 50+15 \% \text { of } 2960 \cdot 39=3198 \cdot 06 \\ 3198 \cdot 06-2991=207 \cdot 06 \end{gathered}$				
Commonly Observed Responses:				

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 8. | (c) | (i) | \bullet^{7} Process: calculate mean | $\bullet^{7}$$(61 \cdot 2+58 \cdot 3+59 \cdot 1+58 \cdot 8+60 \cdot 4$
 $+59 \cdot 8) \div 6=59 \cdot 6$ $\mathbf{1}$ |

Notes:

Commonly Observed Responses:

Notes:

1. Accept rounding or truncation to at least one decimal place for final answer
2. • ${ }^{10}$ can only be awarded when a two-step calculation has taken place

Commonly Observed Responses:

(d)	- ${ }^{11}$ Communication: comment regarding mean - ${ }^{12}$ Communication: comment regarding standard deviation	- ${ }^{11}$ eg on average, Scott's top speed is higher on his new bike ${ }^{-12}$ eg top speed is more consistent with new bike	2

Notes:

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
9.	(c)	-4 Strategy: knows to and starts to calculate the correct two ways of packing -5 Process: calculate number of boxes for one arrangement -6 Process/Communication: calculate second arrangement and state conclusion	-4 Evidence of the two correct ways of packing $\text { -5 } \begin{aligned} & 240 \div 60=4 \\ & 1250 \div 40=31 \cdot 25 \\ & 260 \div 15=17 \cdot 3 \ldots \\ & 17 \times 31 \times 4=2108 \\ & \\ & 240 \div 40=6 \\ & .6 \quad 1250 \div 60=20 \cdot 83 \ldots \\ & 260 \div 15=17 \cdot 3 \ldots \\ & 17 \times 6 \times 20=2040 \end{aligned}$ Maximum - 2108 boxes	3
Notes: 1. Where a candidate considers more than two arrangements do not award \bullet^{4} 2. Where a candidate only considers one incorrect arrangement ${ }^{5}$ is still available 3. Where a candidate attempts more than two arrangements \bullet^{6} is only available where all considered arrangements have been calculated 4. Where \bullet is lost for an incorrect process, \bullet^{6} can be awarded for repeated incorrect process				
Commonly Observed Responses: 1. $78000000 \div 36000=2166 \cdot 666 \ldots$				
	(d)	${ }^{7}$ Process: calculate the number of days and hours - 8 Process: deal with journey time - 9 Process/Communication: know how to deal with time difference and state date and time of arrival	- $7277 \div 24=11$ days and 13 hours - ${ }^{8} 15^{\text {th }}$ June at 1100 - $915^{\text {th }}$ June at 0600	3
		Alternative Strategy - ${ }^{7}$ Process: calculate the number of days and hours - 8 Process: deal with time difference - 9 Process/Communication: know how to deal with journey time and state date and time of arrival	- ${ }^{7} 277 \div 24=11$ days and 13 hours \bullet^{8} e.g. $2200-5$ hours $=1700$ - ${ }^{9} 15^{\text {th }}$ June at 0600	3
Notes: 1. When journey time is given as a whole number of days \bullet^{8} is not available				
Commonly Observed Responses:				

Question			Generic scheme	Illustrative scheme	Max mark
10.	(a)	(i)	- ${ }^{1}$ Strategy/process: know to deal with 0\% rate -2 Process: calculate national insurance	-1 $42000-8164=33836$ -2 12% of $33836=4060 \cdot 32$	2
Notes:					
Commonly Observed Responses: 1. 12% of $42000=5040$					
		(ii)	-3 Process: calculate annual net pay -4 Process: calculate monthly net pay	$\begin{aligned} & \cdot 342000-5427 \cdot 96-4060 \cdot 32- \\ & 3360=29151 \cdot 72 \end{aligned}$ - ${ }^{4} 29151 \cdot 72 \div 12=2429 \cdot 31$	2
Notes: 1. \bullet^{4} is only available when the candidate involves 42000 in the calculation of annual net pay					
Commonly Observed Responses: 1. $(42000-(5427 \cdot 96+3360+5040)) \div 12=2347 \cdot 67$ award 2/2 (using 5040 from part (a)(i)) 2. $42000 \div 12=3500$ if given as the final answer award $1 / 2 \times \checkmark$ 3. $(42000-(5427 \cdot 96+3360)) \div 12=2767 \cdot 67$ award 1/2× \checkmark					
	(b)		- Process: all calculation correct within a valid strategy	-5 $2429 \cdot 31-1714=715 \cdot 31$	1
Notes:					
Commonly Observed Responses: 1. $2347 \cdot 67-1714=633 \cdot 67$ (using 5040 from part (a)(i))					

Question		Generic scheme	Illustrative scheme	Max mark
10.	(c)	- ${ }^{6}$ Process: calculate the monthly cost of the 1 bedroom apartment ${ }^{-7}$ Process: calculate the monthly cost of the 3 bedroom farmhouse -8 Communication: conclusion consistent with working	-6 1 bed: 804.72 -7 3 bed: 618.91 ${ }^{8}$ the 3 bedroom farmhouse is cheapest	3
		Alternative strategy -6 Process: calculate the annual cost of the 1 bedroom apartment or 3 bedroom farmhouse -7 Process: calculate the annual cost of the remaining two -8 Communication: conclusion consistent with working	-6 $9656 \cdot 64$ or 7426.92 - $7426 \cdot 92$ or $9656 \cdot 64$ and 8760 \bullet^{8} the 3 bedroom farmhouse is cheapest	3
Notes:				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)	-1 Process: calculate area of 2 longer walkways -2 Process: calculate total area	- $12 \times 17 \cdot 5 \times 1 \cdot 5=52.5$ or $2 \times 16 \times 1 \cdot 5=48$ - $252 \cdot 5+8 \times 1 \cdot 5=64 \cdot 5$ or $48+11 \times 1 \cdot 5=64 \cdot 5$	2
		Alternative strategy 1 - ${ }^{1}$ Process: calculate area of shorter walkway -2 Process: calculate total area	-1 $11 \times 1 \cdot 5=16 \cdot 5$ or $8 \times 1 \cdot 5=12$ -2 $16 \cdot 5+2 \times 16 \times 1 \cdot 5=64 \cdot 5$ or $12+2 \times 17 \cdot 5 \times 1 \cdot 5=64 \cdot 5$	2
		Alternative strategy 2 -1 Process: calculate total area - ${ }^{2}$ Process: calculate area of walkway	- ${ }^{1} 17 \cdot 5 \times 11=192 \cdot 5$ $\bullet^{2} 192 \cdot 5-8 \times 16=64 \cdot 5$	2
Notes: 1. For candidates who calculate the perimeter award $0 / 2$				
Commonly Observed Responses: 1. $2 \times 17 \cdot 5 \times 1 \cdot 5+11 \times 1 \cdot 5=69$ award $1 / 2 \times \checkmark$ 2. $2 \times 16 \times 1 \cdot 5+8 \times 1 \cdot 5=60$ award $0 / 2 \times x$				
	(b)	- ${ }^{3}$ Strategy: know how to calculate number of boxes required -4 Process: appropriate rounding and calculate cost	$\bullet^{3} 64 \cdot 5 \times 16 \div 50(=20.64)$ ${ }^{4} 21 \times 71 \cdot 95=1510.95$	2

Notes:

1. An area in (a) of less than or equal to $3 \cdot 125$, leading to a consistent number of tiles and a cost of 71.95
2. Correct answer with no working award 0/2
3. If there is no evidence of where the number of boxes has come from award $0 / 2$
4. Do not penalise use of $£$
5. Do not penalise omission of trailing zero

Commonly Observed Responses:

1. $69 \times 16 \div 50(=22 \cdot 08)=23$ leading to $23 \times 71.95=1654.85$ award $2 / 2 \checkmark \checkmark$ (using 69 from part (a))

Question		Generic scheme	Illustrative scheme	Max mark
11.	(c)	-5 Strategy: know how to find the volume - 6 Process: calculate the volume of one part -7 Process: calculate volume of remaining part(s) and add \bullet Process: convert to litres	.5 evidence of composite volume - 6 eg $8 \times 0.5 \times 16=64$.7 eg $\frac{1}{2} \times 12 \times 1 \cdot 5 \times 8+64=136$ -8 $136 \times 100 \times 100 \times 100 / 1000$ $=136000$	4
		Alternative Strategy - 5 Strategy: know how to find the volume - ${ }^{6}$ Process: calculate area of cross section - ${ }^{7}$ Process: calculate volume - 8 Process: convert to litres	. 5 evidence of multiplying the area of the cross section by 8 - $6 \frac{1}{2} \times 12 \times 1 \cdot 5+16 \times 0 \cdot 5=17$ - ${ }^{7} 17 \times 8=136$ - $8136 \times 100 \times 100 \times 100 / 1000$ $=136000$	4

Notes:

1. $V=A h$ is not sufficient evidence for \bullet^{5}
2. \bullet^{6} and \bullet^{7} are not available to candidates who use perimeter in an attempt to find volume
3. In alternative strategy \bullet^{7} can be awarded for multiplying the candidate's calculated area by $8,16,2,0 \cdot 5,1 \cdot 5,2 \cdot 5$

Commonly Observed Responses:

1. $V=8 \times 0.5 \times 4=16$
award $1 / 4 \times \checkmark \times \times$
2. $A=8 \times 0.5 \times 4=16$
